CEC knowlegde needs

Annemarie van Wezel

CEC knowledge needs

CECs in global change context One Health – One Watercycle Solutions-oriented risk assessment Prevent regrettable subsitution

Synthetic chemicals outpace other factors of global change

KWR

Water system integrates urban and rural water withdrawals and returns, sectors demand fit-for-purpose water quality

R Watercycle Research Institute

Van Wezel et al 2017

Sectors, policy frameworks and pathways

KWR

(STARE)

One Watercycle - One Health

Sources

Effects – humans & ecosystems Data on occurence and effects chemicals, pathogens, genes Mitigation measures

Suspect screening

KWR Watercycle Research Institute

Sjerps et al 2016

Concentrations decrease in water cycle, mobile substances remain

(PROMOTE)

OneHealth@KWR

Relation occurrence in groundwater sources with land-use and surface water

infiltration Target

Suspect

KWR

Watercycle Research Institute

(PERSIST)

Majority of evaluated substances detected in drinking water (sources) do not occur in concentrations posing an appreciable risk to humans

- For 142 out of 163 drinking water relevant substances (p)GLVs could be derived
- For 88 of the 163 substances,

health risk assessment could not be performed due to lack of toxicity data or drinking water concentrations

A chemical is never alone... Choice of bioassays to assess mixtures

Dutch drinking water utilities & water

management authorities use bioassays to evaluate

human & environmental health

Toxicity endpoints relevant for drinking water monitoring	Specific pathway	Most promising bioassay(s)
Xenobiotic metabolism	PXR receptor agonists AhR receptor agonists	HG5LN PXR assay, PXR HepG2 assay DR CALUX, AhR geneblazer
Hormone-mediated mode of action	(anti)estrogenic activity (anti)androgenic activity (anti)glucocorticoid activity	ERα CALUX, YES assay AR CALUX, AR-MDA-kb2 GR CALUX, GR-MDA-kb2
Reactive mode of action	Gene mutations Chromosomal mutations DNA damage response	Ames fluctuation assay, ToxTracker Micronucleus assay, ToxTracker UMUc assay, Vitotox, p53 CALUX, BlueScreen
Adaptive stress response	Oxidative stress pathway	Nrf2 CALUX, AREc32 assay
Developmental toxicity	Focus point endocrine distruption	Various nuclear receptor activation assays, H295R assay

From research to implementation on the water cycle

GWRC 2008 to 2017 Endocrine Toolbox

- Estrogenicity
- Beyond Estrogenicity (ER)
- ER, AR, TR, GR, PR, MR, RXR Applied to WW, SW, DW

International projects 2011 to 2016

Biological tools for µpollutants mixtures transformationproducts? Applied to conventional & Water REUSE schemes

> Global Water Research Coalition Watercycle Research Institute

Future research needs

Mindset shift \rightarrow Merge into 'One-Health' system for safe watercycle planning, by integrating human and ecological risks

Framework implementation & acceptance

- Choice of assays in AOP framework
- Guidance for interpretation of data & consensus on EBTs
- Not in drinking water regulation thusfar (but... Risk Based Monitoring)
- Possibly in revision of the EU WFD and Guidelines on Integrating Water Reuse into Water Planning and Management

'One-Health' system for Watercycle

Stakeholder in the water sector are more aware on presence of contaminants of emerging concern

 \rightarrow a strong drive for measures to reduce exposures and effects.

Chemical life-stages based overview of mitigation options

Phase in chemical life cycle	Mitigation option	Relevant stakeholder	Technological r Large spatial scale Efficiency to reduce chemical load to water system + + + + nt - + ± + + + ± nt - + ± - + + + nt - + + - + + + - + + + - + + + - + + + - + + + - + + +		
Development	Green chemistry	Industry Education	+	+	+
Registration and a	authorization Legislation and guidance	Government Industry	-	+	±
Production	Implement best available techniques	Industry Government	+	-	±
Professional	Emission prevention during professional use	Agriculture Health sector	±	-	+
Non-professional	Increase consciousness consumers	Education Industry Consumers	-	+	+
Water treatment	Upgrade sewage treatment plants with advanced technologies	Water manager	+	-	See Table 2
	Advanced drinking water treatment	Drinking water utility	+	-	

KWR Watercycle Research Institute

15

Removal efficiencies of CEC by advanced water treatment technologies; Criteria for reporting and assessment

No homogenous approach to test (advanced) water treatment technologies

A set of 52 reliability criteria and 9 relevance criteria is developed, to select, evaluate and compare CEC removal efficiency of water treatment technologies

	CE	C JPI June 2018		16
Treatment	CEC characteristics	Water matrix	Treatment process	References
technology		characteristics	conditions	
Granular	Molecular charge/pKa	pН	Surface area/grain size	(De Ridder et
activated	Log Kow /Log Dow	DOC content	Pore volume	al. 2011,
carbon	Molecular weight/size	Temperature	Surface charge	Jeirani et al.
	Functional groups (H-		Biological activity	2017, Mailler
	bonds, aromaticity etc.)			et al. 2016,
	Concentration	-	Contact time/EBCT	Nam et al.
		-	Column length	2014, Rossner
			Flow	et al. 2009,
			Backflush routine	Verlicchi et al.
			Scale of testing (bench,	2010)
			pilot, full)	
			Prior carbon use (if any)	_
Powdered	Molecular charge/pKa	pН	Surface area	-
activated	Log Kow /Log Dow	DOC content	Pore volume	-
carbon	Molecular weight/size	Temperature	Contact time	-
	Functional groups (H-		Concentration	-
	bonds, aromaticity etc.)			
	Concentration	-	Surface charge	_
		-	Scale of testing (bench,	-
			pilot, full)	
Ozone	Reactivity	pН	Dosage of O ₃ (and H ₂ O ₂)	(Lee et al.
(+H ₂ O ₂)	Concentration	DOC content	Design reactor (mixing	2013, von
			regime)	Sonntag and
		Nitrite/nitrate	Contact time	von Gunten

Evaluating literature data

A dataset was built containing removal efficiency percentages and the defined reliability criteria.

231 papers reporting on water treatment techniques PAC, ozone/UV \pm H₂O₂ and nano- and reverse osmosis membranes were evaluated of which 53 fulfilled the criteria

Treatment	PAC	$O_3 \pm H_2O_2$	$UV \pm H_2O_2$	NF	RO
# of papers	39	61	83	62	28
After criteria	7	15	20	14	7
# of CECs	119		74	111	51
# of data points	595	997	1396 (529 UV, 867 UV±H2O2)	916	322
Treatment dose	1-43 mg/L	0,5-16,3 mg/L O ₃ (0,0625-10 mg/L H ₂ O ₂)	(0-100 mg/L H ₂ O ₂)		
Contact time	10 min-2 days	13 sec-30 min	1-120 min	2-48 hrs	30 min-24 hrs
DOC content	0-7,5 mg/L	0,8-33,3 mg/L	0-16,4 mg/L	0-3,7 mg/L	0-3,7 mg/L
CEC concentration	1 ng/L - 3353 µg/L	0,18 ng/L – 3353 μg/L	3 ng/L-118 mg/L	1,1 ng/L- 308,24 mg/L	100 ng/L- 15 mg/L

PAC

itial parameter	p-value	R ²	Data		:		100	- 1		9 T	E * E*	ŝ. J		ê	•			
			points			•	1 A 1		1 .	•_•	- Eo	8 - -	100					
g K _{ow}	<0,000 1	0,06262	539				ť.,		1			h 🖗	8	0		0		
OC content	<0,000 1	0,03307	574			-	З.,	1					0	0	0	80	0	
urface area (Wastewater ⁱⁱ)	<0,000	0,1995	247	Itage			<u>3</u> -	3.	ď.	H ²	•		000		0			
		0.05111	500	8				ъо-			*a	E C	0 0	0			-	
	<0,000	0,05114	582	pero						0	0		. ?		•			
Concentration (Wastewater)	<0,000 1	0,1897	247	oval			Ξ.	=40-				- 1	m 0					
Concentration (surface water, other	<0,000	0,1781	306	Zem								20	8				•	
water)	•			-										Ŭ.			•	
							۲.,	20-			0 °2			■ L				
						• 8					- T.						٠	
					•	•				0							•	
				-5	4	-3 -2	4	0		1	2	3	4	5	6	7		
									Loo	Kow	r							

Overall efficiency of selected techniques

Increasing the effectivity by placement of treatment Impact per STP on drinking water or nature

Emissions based on E-PRTR normalized to TOC

Systematic information on many CECs of interest in IWTP effluent is lacking

Slutinsⁱocused perspective

- CEC JPI June 2018
- Research on chemical water quality focuses on problem and risk analysis, little attention to mitigation options
- Solution-focused assessments connect the perspectives of the water cycle and the chemical life cycle
- Solution-focused assessments can be supported by a mitigation database to prioritize mitigation options
- Currently no uniform approach to test and report CEC removal efficiencies, hampering informed decision making. Therefore set of relevance and reliability criteria was developed. Many studies did not include information to assess all criteria
- Modelling the impact of STP or IWTP on susceptible functions allows spatially smart implementation of mitigation options

Case; GenX emission by Chemours Dordrecht

Ban on PFOA → GenX Indirect emission via STP Province gives license

GenX; FRD 902 (salt, REACH registred) FRD 903 (acid) E1

Measurements in surface and drinking water

November 2016: 0,15 µg/l as indicative safe drinking water level

More technologies can be installed....

..but we might better think of ways to:

- Not to create a market pull for new substances when banning
- Use nature-based solutions for removal
- Create (non-)chemical alternatives that combine less hazardous properties with good functionaly
- More integrated and less sectoral chemical registration and authorization
- Co-development knowlegde MS \rightarrow JPI
- Reach a non-toxic environment given future projected changes

